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Criteria for the instability of the equilibrium of gyroscopically coupled systems, when the gyroscopic forces may be predominant, 
are presented. It is sho~a~ that the clear predominance of gyroscopic forces over potential forces still does not ensure stability 
of the equilibrium. The structure of the potential forces remains the key here. As an example, the problem of the stability of the 
steady-state motions of an artificial satellite is considered. © 2000 Elsevier Science Ltd. All rights reserved. 

1. I N T R O D U C T I O N  

Consider the holonomic system, with n degrees of f reedom 

d 0L 0L 
= 0  (1.1) 

d t 3 q  Oq 

the Lagrangian of  which has the form 

L(q,/I) =/--2 (q,/I) +/-I (q, 4) + Lo (q) = ~/IrA(q)/l + f(q)r/I + Lo (q) (1.2) 

We shall assume that L(q,/1) e C 2 (Dq X Rn), the quadratic form L2(0, ~1) is positive definite and the 
point q = q = 0 corresponds to the equilibrium position of system (1.1), (1.2), and f(0) = 0, 
L0(0) = 0. 

It is well known [1, 2] that the problem of the stability of steady motions reduces to Eqs (1.1) with 
Lagrangian (1.2). The criteria for the instability of such motions, that is, of the equilibria of system (1.1), 
(1.2), is usually referred to as the inverse of Routh's theorem [1, 3]. 

If the function q = 0 has a strict local maximum at the point L0(q), then, by Routh's theorem [4], 
the steady motion (the equilibrium position q =/1  = 0) of system (1.1), (1.2)) is stable. If, however, 
there is no maximum, then stability caused, in particular, by the stabilizing action of gyroscopic forces, 
as well as instability can occur [5, 6]. In this case, the issue of the gyroscopic stabilization of the 
equilibrium of system (1.1), (1.2) remains somewhat unclear. 

2. T H E  I N S T A B I L I T Y  OF E Q U I L I B R I U M  U N D E R  C O N D I T I O N S  W H E N  
G Y R O S C O P I C  F O R C E S  ACT 

We shall assume that generalized coordinates are chosen in such a way that 

Lo(q ) = L~a)(q)+/_~m)(q) + R(q), R(q) = o(11 q I1") (2.1) 

/_~a,(q) = l , ~ a  ~''qt2'' cons, = ~-k <0 (2.2) 

where L(~ ) (q) is a homogeneous form of degree m > 2. 
We will denote by ~ ( q )  the restriction of an arbitrary function ~P(q), including a vector function, to 

the set of zeros of the quadratic form L (2) (q). 
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Theorem 1. Suppose that, together with the initial assumptions regarding the Lagrangian L, equalities 
(2.1) and (2.2) hold and, furthermore, 

rr/ /" I) 9 L(o )/~q ;e O, V~ ~ R 2 \ {0}; 

/ N  

2) the function L(~0(q) does not have an extremum at the point ql = q2 = 0; 
3) detG:(0) ~ 0, where G:(q) is a 2 x 2 matrix, obtained from the matrix 

G(q) = (g0(q)), go(q) = ($f,/BqJ-$f/~qi), i , j =  1 . . . . .  n 

by cancelling the last n - 2 rows and the last n - 2 columns; 

4) lim II~RlBqll(llqll)-m+J-~=O, cons t=c t>0 .  
I lq l lo0 

The equilibrium position q =/1 = 0 of system (1.1), (1.2) is then unstable. 

Proof. Making the substitution 

= a , i  = p 

in (1.1), we arrive at the system of equations 

it = OH I 3p, p = - 3 H  l Bq - GA-Ip (2.3) 

H ( q ,  p) = ~ pTA-I (q)p _ Lo (q) = h = const ( 2 .4 )  

By Condition 2 of Theorem 1, the set 

~{(q,p)  e s t = {(q,p) e Dq x R", II q ~ P  I1< el : H(q,p) = h ~< 01 

is a non-empty set. 
From equality (2.4), taking account of relations (2.1) and (2.2), we have 

IlPll 2 < ZIIqll', V(q, p) ~ f2. 0 < ~, = const (2.5) 

Noting that the inequality 

-L~2)(q) ~< ~ ' ) ( q )  + e(q)  (2.6) 

holds for the set f2, as a consequence we obtain 

~. q~. <~ gt(q~ +q~)m/2, cons t= la>0  (2.7) 
k=3  

We rewrite the first two equations of the second vector equation of system (2.3), (2.4) in the 
form 

b r (2.8) 

where G 1 = (grj) is a 2 × n matrix and r = 1, 2. Multiplying respectively the left-hand and right-hand 
sides of Eq. (2.8) initially by the matrix (G2(q)) -l and then by the matrix Go = G2(0), we obtain 

G O (G 2 )-=p = -G0x - G2), - ~H /~x + O((~H / 0x)II q II) (2.9) 
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where 

G0x + G2y = G0(G 2)-! GI/1, x = tl = (qt, q2 ) r  

In system (2.9) we now make the change of variables 

Noting that 

Y =(q3  ..... q.)r 

Go( G 2 )-l ~ + Gox+ G2y = Go z (2.10) 

x = z - (G 2)-t ~ _ Go I G2y 

and taking relation (2.5) into account, we have, instead of (2.9), 

GoT-=(Go(G2)-I)~+G2Y+~LoI~x~z_(G2)-,~_GoIG2y +O(llq II •) (2,11) 

Here O( ][ q [[m) denotes a vector, each component of which in the neighbourhood of the point z = 0 
is of the order of smallness [] q [[ m. 

Since 

( (7o(62)  -I ) '  = O(11 p II), t~2 = O(11 p II) 

where O( [[ p [[ ) denotes a matrix of the corresponding dimensionality with elements of the order of 
smallness [1 p I[, taking inequalities (2.5) and (2.7) into account, we obtain, instead of (2.11). 

Goi = 0~"')(y,z) / ~zly=o + O(11 z II <'~-I÷l~>) (2.12) 
V(q, p )  ~ ~ ,  0 < [3 = const  

Here, the term O( Hz II (m-l+l~)), similar to that described above, is a vector, each component of which 
in the neighbourhood of the point z = 0 is of the order of IIz I[ (m-l+~). Furthermore, 

~/~m~(y,z)/~z[y=e #0,  Vz~ R 2 \ {0} 

Since detG0 ~ 0 then, in accordance with the available results [7] (also see [8] in this connection), 
the vector equation 

L ( ^ xG2(0 )q  = ~ ~)/~q, × = const 

has a non-trivial, real solution Cl = c ~ R2([[ e 11 ~: O). Hence, a non-singular transformation v = Bz 
exists, where B is a constant matrix, which reduces Eqs (2.12) to the form 

= V('-~)(v) + O(11 v II "-~+13) (2.13) 

where V(~-l)(vl, 0) = (av'~1-1, 0) r, a e {1, -1}. 
Next, following Zubov [9], we consider the auxiliary equation 

= - a z  ~-I (2.14) 

the solution of which has the form 

z = z0[l + ztom-2)(m- 2)at] -1/(m-2) (2.15) 
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We shall assume that z0 > 0. 
Without loss of generality, we put a = I in (2.13) since, otherwise, a system with the LagrangianL(q, 

-el) could have been considered as the initial system. Making the change of dependent variables in (2.13) 

v = z ( -e+  w), e =(1,0) r (2.16) 

instead of (2.13), we have 

• m - ]  r 
zfv = - z w  + z r w  + Z(m-l+f~)f(wl - !, w 2) (2.17) 

where 

is a matrix with constant elementsf,~(r, s = 1, 2) and fl l  = -m + 1. 
On changing, using (2.15), to the new independent variable, we obtain from (2.17) 

- z d w / d z  = w + F w  + zPf(w~ - 1, w 2) (2.18) 

The function f(wl - 1, W2) at the point w = 0 does not vanish in the general situation and, moreover, 
the number 13 can also be less than unity. Next, putting 

q0 = -lnz (2.19) 

and making the substitution zl = z 13, we obtain 

dw / dq~ = w + Fw + bzs + o(11 (zz, w) r II), dz~ I d~ = -f~zt (2.20) 

where b is a constant vector and o( II (Z1, w)TII ) denotes a vector with components of a higher order of 
smallness in the neighbourhood of the origin than J[ (Zl, w ) r l l  • 

The corresponding secular equation' of the linear approximation of system (2.20) 

I; !il l +f22 - ~  =0 
0 -7~ 

(2.21) 

has at least two real negative roots from which, by relations (2.15) and (2.19) and taking account of 
equality (2.16), we conclude that a solution of system (2.13) exists which tends asymptotically to the 
point v = 0 when t ---) oo. Noting that system (2.13) is the result of a transformation of system (2.3), 
(2.4) and taking account of the result obtained earlier ([10], a consequence of Lemma 1), we conclude 
that asymptotic motions to the equilibrium position under investigation q =/1 = 0 exist both when t 
---) o~ and when t ---) _oo. The instability of the equilibrium position being investigated is thereby proved. 

Corollary. T h e  equilibrium position q = p = 0 of a Hamiltonian system with a Hamiltonian of the form 

H(q,p) = ~ Z.,(q~ + p ~ ) +  H~' ) (q ,p )+  R(q,p) 
k=2 

(2.22) 

2 2n where H(m)(q, p) is a homogeneous form of order m > 2 and R(q, p) = o( II q ~ p II'% n(q, p) ~ c 
is unstable if the numbers Xk are non-zero and of the same sign and the following conditions are also satisfied: 

/N  

1) (~H~' ) /~z )  # O, V z  ~ R2k{ 0 } 

/N  
where (...) and z respectively denote a restriction of the quantity in brackets and the vector q @ p to the 
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set of zeros of the quadratic f o r m  H(2)(q, p); 

2) the functions H(m)(q, p) do not have an extremum at the point ql = Pl = 0; (q, p) 

3) lim II3RlO(qOp)l l ( l lq~pl l )  -m+t-a =0, cons t=c t>0 .  
I[q • pll-'*O 

It is assumed under the conditions of Theorem 1 that all the coefficients of the quadratic form L~)(q), 
apart from ~,1 = L2 = 0, are negative. It is natural to pose the question: if there are more than two zero 
numbers among the Xi, is it possible within the framework of this approach to arrive at any constructive 
assertion? The answer to this question turns out to be yes. 

In accordance with what has been said above, we modify the structure of the function L~)(q) by 
putting 

[ n 2 
/_~2)(q)=_ ~ Xkqk ' 1~3 ,  const=X k<0  

2 k=l+l 
(2.23) 

Theorem 2. Suppose equalities (2.1) and (2.23) hold and, furthermore, 

1) 3L~ m) / 3qrlq=tq ~,q2.0"...,0) r ~: 0, Vr----- 1,2, (ql,q2) ~ R2 \ {0}; 

i , .  J 
2) t) l) 'O')/Oqr [ r =0, V r : 3 , 4  ..... 1; Iq=(ql .q2.0.....O) 

3) the function L~m)(ql, q2, 0 . . . . .  0) does not have an extremum at the point ql, = q2, = 0; 
4) detGZ(0) ~ 0, where Gl(q) is an l × I matrix which is obtained from the matrix G(q) by cancelling 

the last n - l rows and the last n - l columns; 

lira ll3Rl~qll(llqll)-'+i-¢t=O, const=ct>O 5) 
Ilqll~O 

Then, the equilibrium position q = / i  = 0 of system (1.1), (1.2) is unstable. 

Proof. We rewrite the first l equations of the second vector equation of system (2.3), (2.4) in the form 

b = -G~ii -OHIO~I (2.24) 

where ~ = (Pl, -..,Pt) T, G1 = (grj) is an I × n matrix; r = 1 . . . . .  l;j = 1 . . . . .  n. 
Next, following the argument used in the proof of Theorem 1, we arrive at a system of equations of 

the form of (2.12), in which Go = Gl(0), y = (qt+l . . . .  , qn) T. On the basis of Conditions 1-3 of Theorem 
2, we conclude that a non-singular, linear transformation exists which reduces equations of the type 
(2.12) to the system of l equations 

= v~m-l)(V)+ O(ll v II "-t+13) (2.25) 

where v(m-1)(DI, 0 . . . . .  0) = ( a ~  '-1, 0 . . . . .  0) T, a ~ {1, -1}. 
Then, applying the method used in the proof of Theorem 1, we obtain a system of the type (2.20), 

the corresponding secular equation of the linear approximation of which has the form 

- m + 2 - ~ ,  f12 "'" f l l  /~ 
0 l + f ~ - - X  . . .  f2t b2 

0 1}2 l + f u - X  bt 
o o ... o - p - x  

=0 

As before, this secular equation has at least two real negative roots which enables us to conclude that 
Theorem 2 holds. 
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Corollary 1. If all the numbers ~,k in expression (2.23) vanish, then Conditions 2 and 4 of Theorem 
2 become the following conditions 

2*) Ol~om)lOqrJq=(ql,q2,0,....O)r----0, Vr=3,4 ..... n; 

4*) detG(0)~ 0. 

Corollary 2. Suppose the function L(0m)(q) is a homogeneous form of odd degree m I> 3. Then, 
Conditions 1-3 of Theorem 2 can be replaced by the single condition 

A 
a L(om)/a , 0,  R I \ lo} 

where the symbol ,,./2.." denotes a restriction of the quantities q and aL~m)la~l to the set of zeros of the 
function L~)(q) defined by equality (2.23). 

Proof. The conditions of Corollary 2 always ensure the existence of a non-trivial real solution 
-- e Rl(ll c II * 0) o f  the vector equation 

/ N  

xGt(0)~= aL(~[)l~i, x=const 

which then enables as to use the scheme for the proof of Theorem 1. 

Corollary 3. The equilibrium position q = p = 0 of a Hamiltonian system with a Hamiltonian of the 
form 

H(q,p) = '~. ~,k(q 2 +.p~)+ Hfm)(q,p)+ R(q,p) 
k=l+l 

R(q, p) = o(11 q • p IIm); H(q, p) ~ C2(D~;) 

where H(m)(q, p) is a homogeneous form of odd order m t> 3, is unstable if the numbers ~-k ~ 0 have 
the same sign and the following conditions are satisfied 

1) (aHtm)/a(qOp)) ;e 0, V(qOp)eR ~10} 

where the symbol ".~.." denotes a restriction of the magnitudes of q • p and aH(m)/a(q~p) to the set 
of zeros of the quadratic form H(2)(q, p); 

lim IlaR/a(q~Dp)ll(llq~Pll)-m+~-a=O, const=tx>O. 2) 
Uq~)pll-)o 

3. THE INSTABILITY OF SYSTEMS WITH 
TWO DEGREES OF FREEDOM 

Theorems 1 and 2 presuppose that the Lagrangian has a very special structure which holds in far 
from in all cases of gyroscopic systems. In particular, in the proof of Theorems I and 2 (apart from the 
case when it is required that the number m is odd), it is essential that a certain subsystem with two 
degrees of freedom may separate out in the initial system which would then enable the stability 
investigation to be reduced to a certain standard situation. In this connection, it is of interest to consider 
in greater detail systems with two degrees of freedom expecting the stronger results to be obtained in 
this case. 
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To investigate the stability, we use Hamiltons' action function [10-12] (the prime denotes a time 
derivative) 

t 
S = J  L(q, q')dx (3.1) 

0 

Assuming that the solutions of system (1.1), (1.2) with the origin at Dq × R" are extendable along 
the whole axis t ~ R, we can represent the action function in the form 

S = S* (x,q(x).q'(x))l~ (3.2) 

The assumption regarding the extendability leads to no loss of generality in the treatment if account 
is taken of the facl: that the following discussion is concerned with the instability of an equilibrium. 

Theorem 3. Suppose n = 2 and a number e > 0 (Dq D ~) exists for which the following conditions 
are satisfied 

1) m=lqEs~=lq~Dq, l lq l l<e}:Lo(q)>O}~=O,  0~ato;  
2) the set co does not contain the cycle encircling the point q = 0; 
3) de tG(0 )#  0; 
4) a L o / b q # O  VqEs t \ 0 .  

The equilibrium position q = Cl = 0 of system (1.1), (1.2) is then unstable. 

Proof. Under the conditions of Theorem 3, when account is taken of Darboux's theorem (see [7, 13]), 
generalized coordinates can always be chosen such that 

/'1 = ( - q 2 q l  + q l q 2 )  

We represent Fiqs (1.1) in the Hamiltonian form 

aH a/-/ p = -  aq, 

L ! T - - - Z _  H(q,p)=~p A p-pTA-If-Lo + l f r A - = f f h  =eonst 
2 

(3.3) 

Taking (3.3) into account, we rewrite the action function S, which is defined by equality (3.2), in the 
form 

, aH , 
Sl(t,q,p).= S (x,q('c),-~p ('C))1o = S~ ('c,q(x),p(x))It o 

In accordance with the initial assumptions and the conditions of Theorem 3 S; ~ CI(R x s'~). 
We now consider the set 

f~* = {(q, p) E s~ = {(q, p) ~ Dq x R", II q ~ P II < e} : H(q, p) = h = O} 

The set f~* is non-empty on the basis of Condition 1 of Theorem 3. 
We assume that the equilibrium position q = p = 0 of system (3.3) is stable and we denote the set 

+ + , of positive limit points of its trajectories by A . By the assumption of stability A c~ t3 \{0, 0} 
= A~ # 0. The set A~, as it consists of the positive limit points of the trajectories belonging to Q*, is 
compact and, therefore, contains the minimum set F(q, p) C A~ [14, p. 401]. This last set is distinct 
from the equilibrium state according to Condition 4 of Theorem 3. The set F is also compact since it 
is a closed subset of  the set A~. Hence, in accordance with Birkhoff's theorem [14, p. 402], we conclude 
that any trajectory T C F is recurrent and thereby stable in Poisson's sense [14, p. 363], that is, a sequence 
{tk} (k = 1, 2 . . . .  ) exists such that 
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lim t k = 0% lim U q(t~,qo,Po)~p(tk,qo,Po)I I=l l  qo E~Po II, V(qo,Po) ~ 7 
k--~='* k - - ~  

Together with (3.3), we now consider the auxiliary system 

1 OH q2 il = q21 0H0p, li = - q-'f--;0q = q2 + q2 (3.4) 

Since F C I)*\{0, 0}, the expression 7 C F does not vanish on any trajectory qZ. Hence, if one confines 
oneself solely to a consideration of the set of trajectories F, neglecting the velocities of motion of 
corresponding representative points along these trajectories, then, when Condition 2 of the theorem 
is taken into account, we conclude that auxiliary system (3.4) is equivalent to system (3.3). 

We now consider the derivative of  the function Sl(t, q, p) of the vector field with respect to t, which 
is defined by Eqs (3.4). As a result, we obtain 

as, os, l oN] 
d, = 0t + ~ " [  ~qq 0p 0p ~--~q J (3.5) 

Since, by Lemma 2 from [10], 

OS I lOt=O, V(q,p)ef~" (3.6) 

equality (3.5) can be rewritten in the form 

dS I I .( ~H'~ L(q, ii) ( ~ + L o )  (-q2ql+qlqz) 
-~-  = ~ -  t~,q,--~-p ) = - - ~  = qZ I' q2 (3.7) 

We integrate equality (3.7) along a segment of the positive half-trajectory which is stable in Poisson's 
sense Y~,k C F(y~,k = {q(t), p(t) : t e [0, tk] C R ÷, tk e {tk}}] of system (3.4). As a result, we obtain 

I dSi = I l.~dt + ~0 I~ k , ~0 = arccos (3.8) 
~,,~ 0 q 

According to Condition 2 of the Theorem 3, the second term on the right-hand side of equality (3.8) 
is bounded. As far as the first term is concerned, noting that the expression for L2 is non-negative and 
that L2 ~ 0 in any trajectory passing through f~*\{0, 0}, by the mode of reasoning given in [10], we 
arrive at the conclusion that, when t, ~ 00, it is unbounded from above in 7~, ,. At the same time, since 
the function $1 does not have any singularities in s~, the result of integration of the left-hand side of 
equality (3.8) can be represented in the form 

dS~ = S~ (t~,q(q ),p(q ) ) -  S=*(0,q(0),p(0)) 
(3.9) 

Since values of the function (q(tk), p(tg)) which are bounded from above correspond, when account 
is taken of (3.6), to a point S'~ which returns to the initial point (q(0), p(0)) when tk ~ o0, we conclude 
on the basis of relations (3.9) that equality (3.8) is contradictory. Consequently, the assumption regarding 
the stability of the equilibrium position q =/1 = 0 of system (1.1), (1.2) is untrue. Theorem 3 is proved. 

Corollary. Under the conditions of Theorem 3, solutions of system (1.1), (1.2) exist which asymptotically 
tend to the equilibrium position q =/1 = 0 when t ~ oo and t ~ _oo. 

Proof. It follows from the scheme for the proof of Theorem 3 that the set f2*\{0, 0} does not contain whole 
trajectories. Hence, using the approach which has been described previously in [10, p. 92], we conclude that the 
corollary holds. 

Theorem 3 generalizes the results concerning systems with two degrees of freedom obtained previously in [7, 15]. 

Remark. Condition 2 in Theorem 3 is essential as can be seen from the example of the system 
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_ at~ _ a ~ .  
/11 - 2 • 2  - ~ q l '  /12 +241 -3--~" 2 , const--- 2L~0 (3.10) 

L0 (q) = Lo (q2) E C 2 

where the point ql :-" q2 = 0, as above, corresponds to an equilibrium position. 
As a result of the change of variables 

X = COS~L/ql -sin~Ltq2, y = sin~Ltql +cos),.tq2 (3.11) 

which satisfies the equality: q2 = x 2 + y2, instead of (3.10), we obtain 

~+x2x a ~  ~+xzy=at~  
='~-x ' ~ (3.12) 

Lo(x 2 +y2)= L0(ql 2 +q22) 

Hence, as a consequence of transformation (3.11), system (3.10) becomes the natural system (3.12), the energy 
integral of which takes the form 

/( . i .2 +~2)+2~2(X2  +y2)_/ .~(X2 + y 2 ) =  h =cons t (3.13) 

Since L0 ~ C 2, x = y = 0 in the neighbourhood of the point Lo(X 2 + y2) = O(x 2 + y2) as the equilibrium position 
of the system. Hence, owing to the choice of the constant k, it is always possible to ensure that the potential energy 

rl = I-~.2tx2 +yZ)-Lotx2 +y2) 
2 

of the natural system which has been obtained has a strict local minimum at the point x = y = 0, regardless of the 
2 value of L0(x 2 + y ), and that the equilibrium position x = y = 0 is thereby stable. It is obvious that the possibility 

of Condition 2 of Iheorem 3 being satisfied is precluded by the structure of the function Lo(x z + yZ). 

Example. We will now consider the problem of the stability of the steady motions of an artificial satellite 
which is a dynamically symmetric rigid body, the central ellipsoid of inertia of which is an ellipsoid of 
revolution [2, p. 92]. The Lagrange function has the form 

I A[(~2 + ~2 sin 2 0 + 20) 0 (~1 sin ¥ + V sin 0 cos 0 cos V ) -  c02 sin2 0 cos z W] + t.=~ 

+ ~  C(~+ @cos.0- to0s in0cos~)  2 - c%2(C-A)cos 2 0 

He re A  and C are the principal central moments of inertia of the satellite; 0, ~, q~ are the Euler angles 
by means of which the position of the satellite in the orbital system of coordinates is defined, and COo 
is the angular velocity of the centre of mass of the satellite in its motion in the orbit. 

Since the angle of natural rotation ~0 is a cyclic coordinate, we have 

~/" = C(~o + ~ cos e - co 0 sin e cos ¥ )  = c o  O = const (3.14) 

Integral (3.14) reflects the constancy of the projection of the instantaneous angular velocity of the 
satellite ohto its axis of dynamic symmetry. 

Eliminating the cyclic coordinate, we obtain Routh's function 

R := 1 A[[~2 + q/2 sin 2 O + 2(o 0 (t~ sin ~1/+ ~ sin O cos O cos  ¥ ) ]  + C(o°~/cos  O -  W 
2 

W=3~2°(C-A)c°s20+lA°~gsin2Oc°s2~+C°~%a°2 sin 0 cos V + 71 C0~302 
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(W is the reduced potential energy). 
The relative steady motions of a satellite, the centre of mass of which moves uniformly in a circular 

orbit, are determined from the equations 

bW 3W 
= =0 (3.15) 

bO ~¥  

We will confine ourselves to considering one of a series of solutions of system (3.15) [2, p. 94] 

c o ~  ° 
0 0 = ~ - ,  c o s  ¥ 0  = - AtO--"O" (3.16) 

On putting, in the perturbed motion, 

0 = 0 o + X , ¥ = ~ o + y  

in a small neighbourhood of solution (3.16), we have 

W(O' ~ ) - W ( 2 ' V / O )  =30~2(C-A)sin2x+lAtO~(I-cOs2~O)sin2y+2 

, c___] 
+ - A ~ ° c ° s ~ ° s i n ¥ ° s i n y ( s i n 2 x + s i n 2 y ) + !  2 ~2(s in4  x + sin4 Y) + " 

+ / [ - A ~ ( l - c o s 2  ¥0 )+  2 ~-~AtO°2]sin2xsin2y+o[(sin2x+sin2y) 2 ] 

g 
RI(O, ~ ,  O, w)-Rj (O,  O, ~ ¥o)=AO~oCOS¥oN- 

- ( A t o  o cos  ¥o  + c(o~)xy + O(x 2 + y2) (I ~ I + 15' I) 

(3.17) 

In addition to the result which has been obtained previously [2, p. 97], we consider the case when 
the Poincar6 stability coefficients can vanish. From Theorem 3, taking account of equality (3.17) and, 
also, the fact that g12(0, 0) = -g21(0, 0) = -Cto ° in the problem being considered, we conclude that 
steady motion (3.16) is unstable in the following cases 

1) A > C, [cos ~ol = 1; 

2) A = C ,  0 <  I cos~0[ < 1 .  

On the other hand, by Routh's theorem, steady motion (3.16) is stable if any of the following conditions 
hold 

1) A < C, Icos ~01. ~< 1; 
2) A = C, ]cos ~01 = 1. 
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